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The theoretical treatment of partition chromatography, advanced in an earlier
article!, has now been supplemented by numerical calculations performed on a
digital computer. In the present calculations the treatment in ref. 1 has been closely
followed and therefore only a short summary of the method is given here.

In the model used in the theory, the chromatographic column is divided into
cells of equal width and the operation of the column is assumed to take place in
discontinuous steps. During a step the solution in the mobile phase of a cell is allowed
to exchange solute with the stationary phase of that cell (lateral diffusion) and with
solutions of the mobile phase in neighbouring cells (longitudinal diffusion). At the
end of the step the solutions of the mobile phase in each cell are instantaneously
shifted one step to the adjacent cells and the equilibration procedure is repeated. The
solute concentration in the mobile phase of a particular cell is designated f; s, where
¢ is the number of the cell and j the time (with the duration of a step being taken as
the time unit). Thus f; ; defines a matrix where the ith row gives the solute concen-
tration in the 7th cell at different times and the jth column gives the distribution of
the solute concentration in the mobile phase over the entire chromatographic column
at the time 7. The elements of the matrix f; y are calculated from the characteristic
parameters and the initial conditions of the column operation according to Eqns. (23)
and (24) in ref. 1.

=~ In order to'simplify the treatment the last term in Eqn. (24) is neglected, 7.e.
longitudinal diffusion in the stationary phase is not taken into account. This ap-
proximation is of minor significance for the theory, but it makes possible the use of a
single recursion formula for the determination of f; ;. It takes the form:
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The following parameters characterize the column operation:

V4, Ve = volumes per interphase area of mobile and stationary phase respectively
D,, D, = diffusion coeflicients in mobile and stationary phase respectively

¥ = partition coefficient

v = translational velocity of the mobile phase.

The initial conditions are given by the elements f,; and f; ; in Eqn. (1), and
were in all cases chosen to represent a rectangular concentration peak in the solution
entering the chromatographic column.

The results were abstracted from the computor in the form of a few selected
columns of a matrix, representing the concentration distribution in the mobile phase
of the chromatographic column at different times. For a detailed characterization of
the distributions their zeroth, first and second moments, with respect to the origin
and with the cell width as unit of length, were also calculated. For the jth column
they are defined in the following way:

Ao = Zi:fu (2)
Ay = ;z fis (3)
Ao = (‘1;‘,@ fis (4)

It was found during the course uf the calculations that the zeroth moment 4,
(representing the amount of solute in the mobile phase) in a given matrix generally
very rapidly converges to a constant value. Hence a normalization on a common
basis of the distributions represented by the different matrix columns is possible,.
The normalized distributions may then be characterized by the mean u and the second
moment around the mean u,. They are defined as follows:

no= Ai/do (5)
pe = Asfdo — p® (6)

In addition the mode M, defined as the location of the maximum of the smoothed
distribution curve, was also determined.

Both @ and M are measures of location of the dlstubutlon whereas f, is a
measure of dispersion. TFurther, as a measure of skewness Pearson’s measure S is
used. It is defined in the following way:

p— (7)
\/Ma /

In the following the results will in general be given in terms of the parameters
Ao M, u, pus and S.

* Here the dependence of #2 on the partition coefficient ¢ is taken different from that in ref. 1,
It takes into account the assumption that diffusion in the stationary phase is the rate determining
step in lateral diffusion. It simply states that the volume term of the mobile phase (where the
concentration is kept uniform by convection) is changed in proportlon to .

S =
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The present calculations were carried out with the Facit digital computer and
matrixes of the order 200 were evaluated. The effective time for the evaluation of a
matrix ‘vas about one hour.

RESULTS

In the calculations the above mentioned characteristic parameters were varied
in order to determine their effect on the column operation. The parameters occur in
the coefficients of Eqn. (1) only in form of the combinations D,z/V,2, V,/yV, and
D,/v2r. Therefore, not all of the parameters need be varied independently, and in the
present calculations thus only the parameters D,, D, and ¥ were varied. The others
were kept fixed and had the values:

v = 0.01 cm sec~! : (8)
V1/Ve = 0.35 (9)
7a = o0.01 cnn (10)

Relation (9) refers to a column filling consisting of tight-packed spherical beads.
According to (10) the radius of a bead is then 0.03 cm.

Convergence of the numerical solutions

In the numerical calculations the column operation occurs in discontinuous
steps. As the exact solution is approached only in the limit when the number of steps
tends to infinity, it is necessary to examine the convergence of the numerical
solutions. For this reason calculations were carried out using alternatively 1o, 20, 50
and 200 cells for the same length of a given column. The corresponding matrixes are
numbered 1, 2, 3 and 4, respectively. In all cases the characteristic parameters have
the same values, namely D; = 1073 cm?'sec™?, D, = 5-10% cm®-sec~! and y = I.
The initial conditions are:

Ly = jt forj = 1,.+-,m (1)
= lo forj = #n -+ 1,-:, 200

I1forj=1,"", 0 —1
fos o {o for § = n,:++, 199 (12)
fi1 =oforé¢ = 2,---, 200 (13)

In order to represent the same initial concentration peak the value of # in (11)
and (12) is 1, 2, 5 and 20 for the matrixes 1, 2, 3 and 4, respectively. The cell width in
the corresponding column models is 0.1, 0.05, 0.02 and 0.005 cm and the equilibration
time 7 has the values 10, 5, 2 and 0.5 sec, respectively. The results are recorded in
Table I in the form of 4 and g, values for the 1oth, 20th, s50th and zooth columns
of the respective matrixes, representing the situation at the same nominal time in-
stances. In Fig. 1 plots of x and u, against /7 are shown. These curves indicate the
way of convergence to the solutions of continuous column operation, represented by
the extrapolated values on the ordinate axis.
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TABLE I
MATRIX NUS. I, 2, 3 AND 4

Matyix No. 1 2 3 P’
Column No. 10 20 50 200

n 4.1086 3.401I4 3.0498 2.9028
Ha 1.6891 1.211 1.037 1.006

Influence of diffusion and partition coefficients

The influence of both the lateral and longitudinal diffusion coefficients and the
partition coefficient is established by separately changing these parameters. In all
these calculations the value #» = 3§, in the initial conditions (11) and (12), is used and

the value of 7 is 2 sec giving a cell width of 0.02 cm. The conditions are then reasonably
close to those of continuous column operation.

. F.

05~

o " " 2 L (! " N L : 1
0 0.5 ! n

Fig. 1. Convergence of solutions from discontinuous column operation.

In the matrixes numbered 35, 6 and 7 different longitudinal diffusion coefficients
are used, D, having the values o, 10-% and 51075 cm?-sec™?, respectively. (The results
are recorded in Table Il.) In the matrixes numbered 8, g and 10, different lateral
diffusion coefficients are used, the values of D, being o, 10~¢ and 10-7 cm?-sec™?,
‘respectively. (The results are recorded in Table III). To this group belongs also matrix
No. 5 in Table IT, for which D, = 5-10-% cm?2-sec™!. Finally, in the group of matrixes
numbered 171, 12, I3, I4, I5 and 16 the partition coefficient is varied, the values of ¥
being o, 0.1, 0.2, 0.5, 2 and 5, respectively. (The results are shown in Table IV). To
this group belongs also matrix No. 6 in Table II, for which y = 1.

DISCUSSION

IFrom the results in Tables II-IV it is seen that in all cases, except matrix No. 10,
steady state conditions are established in the chromatographic column. The steady
state is characterized by constancy in the value of total solute concentration in the
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TABLE 11

MATRIX NOS. 5, 6 AND 7

29

D,y = o, 1075 and 5 10-% cm? sec™?, respectively
D, = 5-107% cm?-scc™?t
y =1
Matriv No. Parameter Column numbey
25 50 100 1350 200
5 Ay 1.2963 1.2963 1.29063 1.2903 1.2963
] 8.7187 15.201 28,165 41.129 54.002
M 7.841 14.285 27.237 40.197 53.159
Mo 11.35 24.40 50.53 76.54 102.7
S 0.2061 0.185 0.13L o.107 0.092
6 Ag 1.2834 1.2834 1.2834 1.2834 1.2834
2] 8.7666 15.240 28.212 41.174 54.137
‘ M 7.731 14.182 27.134 40.094 53.055
Ha 12.2 25.02 53.31 80.84 108.3
S 0.296 o0.210 0.148 0.120 0,104
7 Ay 1.2315 1.2315 1.2315 1.2315 1.2315
n 8.9704 15.452 28.416 41.380 54.343
M 7.430 13.901 26.853 39.812 52.773
Ha 15.75 32.05 64.64 97.20 120.8
S 0.388 0.274 0.104 0.1590 0,138
TABLE 111
MATRIN NOS. 8, 9 AND 10
D, = oo, 10-% and 10~7 cm?-sec—}, respectively
DI = O
v =1
Matrix No. Parameter Column nuntber
23 50 I00 I50 200
8 A, 1.29063 1.2963 1.2063 1.29063 1.2963
I 74445 13.926 26.389 39.852 52.815
M 7.180 13.681 26.646 39.609 52.572
Mo 4.1066 8.97 18.57 28.19 37.78
S 0.130 0.082 0.056 0,046 0.040
9 Ay 1.4236 1.2990 1.2963 1.2063 1.2963
It 16,090 22.8206 35.770 48.734 61.698
N 13.453 19.027 1.405 44.318 57.211
1 39.81 114.48 239.6 364.3 488.9
S 0,418 0.355 0.282 0.231 0.203
10 Ag 3.0352 3.0909 2.1259 1.6794 1.4727
4 22,801 47.080 89.825 121.74 143.97
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TABLE IV

MATRIX NOS, II, 12, 13, I4, I5 AND 16

Dy = 10~% cm2-sec-?

Dy, = 5-1078 cm?®:sec™?

y = o, 0.1, 0.2, 0.5, 2 and 5, respectively

Matvie No. Parameter Column numbey

25 50 I00 I50 o 200

11 A, 4.9500 4.9500 4.9500 4.9500 3.4664
M 23.071 48.071 98,071 148,071
M 22.950 48.009 08.039 148.050
Mg 4.13 6.55 11.6 16.7
S 0.059 0.023 0,009 0.005

12 A, 3.8540 3.8500 3.8500 3.8500 3.%480
" 19.892 39.358 78.247 117.135 156.013
M 21.878 43.777 81.422 120,212 159.044
Ha 18.94 54.27 125.8 197.1 267.7

—0.457 —o0.600 —o0.283 —o0.219 —-0.186

13 A, 3.I519 3.1500 3.1500 3.1500 3.1500
M 17.385 33.302 65.121 96.937 128.756
M 20.329 34.641 606.309 08.087 129.887
Ig 23.72 62.37 139.6 217.3 204.3
) —0.604 —o0.170 --0.101 —0.078 —0.0606

14 Ag 2.0383 2.0382 2.0382 2.0382 2.0382
y23 12,581 22.875 43.463 64.052 84.638
M 12,026 22.234 42.790 063.366 83.051
Ma 20.56 47.04 99.89 152.8 205.6
S 0.122 0.093 0,067 0.056 0.048

15 Ay 0.73724 0.73724 0.73724 0.73724 0.73724
M 5.7741 9.4976 16.944 24.391 31.838
M 4.842 8.789 15.986 23.424 30.876
Mo 5.602 11.38 22.95 34.52 46.10
S 0.394 0.210 0.200 0.105 0.I42

16 Aq 0.32386 0.32386 0.32386 0.32386 0.32386
H 3.5086 5.1442 8.4154 11.G687 14.958
M 2.913 4.404 7.695 10,966 14.228
My 1.874 3.717 7:403 11.10 14.78
S 0.436 0.384 0.265 0.216 0.1g0

mobile (and stationary) phase of the chromatographic column. This value is independ-
ent of the diffusion coefficients D, and D, and, for a column of given geometry,
depends only on the partition coefficient . The minor differences found in Tables II
and IIT are due to end effects (diffusion out through the column ends). Under steady
state conditions very simple rules exist concerning the translational velocity (peak
velocity) and spreading of a concentration peak.

Peak velocity :
The absolute peak velocity may be defined as the translational velocity of the
center of mass of a concentration peak. A more convenient quantity is the relative
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peak velocity, which will be designated by » and is defined as the ratio between the
absolute peak velocity and the velocity of the mobile phase. It is obtained directly
as the absolute velocity of the peak if the width of a cell and the equilibration time ¢

are used as length and time units respectively, as then the velocity of the mobile
phase becomes unity.

12
/J
F 10
100 }
9
6
!
-
CA
0 0 9
() 100 200 J

Fig. 2. Peak location as functions of time, Numbers in the figure indicate matrix numbers. For
matrix No, 10 steady state is not established.

From the data in Tables II, IIT and IV it follows that under steady state
conditions the peak velocity is constant. This is illustrated for some representative
cases in Fig. 2, where plots of u against time are shown, The calculated values of v are
recorded in Table V, It is seen to be independent of the diffusion coefficients D, and D,,

but strongly dependent on the partition coefficient. The latter is illustrated in Fig. 3,
where a plot of v against % is shown.

Pealk spreading

The breadtih of a concentration peak is determined by its second moment around
the mean p,. Under steady state conditions this is found to be a linear function of

—
—

0 1 2 ¥ -
Fig. 3. Peak velocity and spreading cocfficient as function of partition coefficient.

o .
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TABLE V
VALUES OF RFLATIVE PEAK VELOCITIES AND SPREADING COEFFICIENTS

Matrix No. » D D ro%
(local unitsy (c.g.s. unils)

5 0.2593 0.2610 5.220
6 0.2593 0.2745 5.489
7 0.25903 0.3200 6.5109
8 0.2593 0.096035 1.921
9 0.2593 I.248 24.90
I 1.000 0.0503 1.0006
12 0.777 0.711 14.22
13 0.6364 0.773 15.46
14 0.4118 0.52 10.57
Is5 0.1489 0.1157 2.314
16 0.06543 0.03686 0.7372

time. This is seen from Fig. 4, where some representative plots of u, against time are
shown. It is thus possible to characterize the peak spreading by a spreading coeffi-
cient D, defined by:

pe = 2Dt + C (14)

where C is a constant, which takes care of the ‘‘end effect’’.

There is a close analogy between the present treatment of peak spreading and
the spreading of concentration gradient curves in diffusion experiments2, Thus, the
definition of the spreading coefficient is analogous to the definition of the diffusion
coefficient in free diffusion experiments and the factor 2 in Eqn. (14) is included to
make the correspondence complete. In the case of matrix No. 11, where the peak
spreading is due only to longitudinal diffusion the value of D is 1.006*10-% cm?-sec—1,
which is in good agreement with the longitudinal diffusion coefficient D, = 10-5 cm?2:
sec™!, used in these calculations. It is obvious that even other methods, e.g., the area
method may be used to determine the spreading coefficients.

M2
300

12
200 b

6
100 |

8

0 Lz X

0 100 200 J
Fig. 4. Second moment as function of time. Numbers in the figure indicate matrix numbers.
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The calculated values of D are listed in Table V. It is seen that longitudinal
diffusion is of relatively minor importance as a cause for peak spreading. The major
cause is the partition process, and its effect is considerable even at instantaneous
equilibration (D, = o), and is greatly accentuated by local non-equilibrium. The
influonce of the partition coefficient is somewhat complicated, and is illustrated in
Fig. 3. For y = o the spreading coefficient equals the longitudinal diffusion coefficient;

it rises steeply with increasing y, passes through a maximum and then decreases
monotonously with increasing y.

"1oo

- 0.05

0 — ) J " " 1 1
50 100 7
Fig. 5. Distribution curves for some peaks. Columns j = 100 for matrix Nos, 6, 9 and 12 {rom top
to bottom.

Pealk asymmetry

Besides the peak velocity and peak spreading, the asymmetry of a concen-
tration peak is of fundamental importance in characterizing the chromatographic
process. In the present treatment the asymmetry of the concentration distribution is
described by the measure of skewness S, defined by Eqn. (7). As S admittedly gives a
poor characterization of the form of a concentration peak, some typical peaks are
reproduced in Fig. 5 for illustration purposes. It is seen from the S values in Tables 11,
I1I and IV that the peaks may exhibit both positive and negative skewness. It is also
scen that the skewness invariably decreases with time. This indicates that the
asymmetry is an ‘“‘end effect’”’, which is introduced into the distribution when the
peak enters the chromatographic columns.

Pealk exit from column

Hitherto the solute concentration dlstrlbutlon inside a chromatographic
column has been considered. It is also of interest to examine the behaviour of a con-
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centration peak at the exit from the column. From rather qualitative reasoning it
can be induced that at exit a considerable spreading of the peak occurs. The reason
for this is that the part of the peak which already has left the column has the same
velocity as the mobile phase, whereas.that part of the peaks which still is inside the
column has a velocity very close to the peak velocity. Thus, the distortion is due to
the difference in velocities of the peak and the mobile phase and is accentuated by
iow relative peak velocities. An illustration of the process is given in Fig. 6.

fy

0l p

e 1

0 50 100 i

0

Fig. 6. Peak exit from column. Column end at cell No. 25. The data were obtained from matrix
No. 5. Curve 1 refers to time j = 50, curve 2 to j = 100,

The present calculations represent ‘‘experiments’’ with the model column and,
within this frame, constitute a complete study of the process of partition chromatog-
raphy. They cover wide ranges of operational conditions and include all practical
situations as to the magnitudes of the diffusion coefficients, the partition coefficient,
etc. Although the model represents an idealization of a real chromatographic column
it is felt that it brings out the pertinent features of the chromatographic process and,
due to the high accuracy obtainable in the calculations, the significance of such cha-
racteristic quantities as peak velocity and the spreading coefficient of a peak are
established. It thus makes a better understanding of the chromatographic process
possible.

It should be mentioned here that, independent of the present work, the process
of partition chromatography has been studied by LAURENT AND LAURENT? with the
help of an electrical analogy computer. A comparison of the results will therefore be
of'interest.
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SUMMARY

The operation of a chromatographic column has been simulated by numerical
calculations on a digital computer. The calculations cover wide ranges of operational

conditions for a column and give a detailed characterization of the chromatographic
process.
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